Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Pierre-Marie Pédrot
stdpp
Commits
7d197b3e
Commit
7d197b3e
authored
Aug 06, 2014
by
Robbert Krebbers
Browse files
Break at 80
parent
a07cc19d
Changes
3
Show whitespace changes
Inline
Side-by-side
theories/list.v
View file @
7d197b3e
...
...
@@ -2283,7 +2283,8 @@ Section Forall2.
Proof
.
intro
.
unfold
sublist_lookup
,
sublist_alter
.
erewrite
<-
Forall2_length
by
eauto
;
intros
;
simplify_option_equality
.
apply
Forall2_app_l
;
rewrite
?take_length_le
by
lia
;
auto
using
Forall2_take
.
apply
Forall2_app_l
;
rewrite
?take_length_le
by
lia
;
auto
using
Forall2_take
.
apply
Forall2_app_l
;
erewrite
Forall2_length
,
take_length
,
drop_length
,
<-
Forall2_length
,
Min
.
min_l
by
eauto
with
lia
;
[
done
|].
rewrite
drop_drop
;
auto
using
Forall2_drop
.
...
...
theories/listset_nodup.v
View file @
7d197b3e
...
...
@@ -48,12 +48,7 @@ Qed.
Global
Instance
listset_nodup_elems
:
Elements
A
C
:
=
listset_nodup_car
.
Global
Instance
:
FinCollection
A
C
.
Proof
.
split
.
*
apply
_
.
*
done
.
*
by
intros
[??].
Qed
.
Proof
.
split
.
apply
_
.
done
.
by
intros
[??].
Qed
.
Global
Instance
:
CollectionOps
A
C
.
Proof
.
split
.
...
...
theories/proof_irrel.v
View file @
7d197b3e
...
...
@@ -9,24 +9,20 @@ Instance: ProofIrrel True.
Proof
.
by
intros
[]
[].
Qed
.
Instance
:
ProofIrrel
False
.
Proof
.
by
intros
[].
Qed
.
Instance
and_pi
(
A
B
:
Prop
)
:
ProofIrrel
A
→
ProofIrrel
B
→
ProofIrrel
(
A
∧
B
).
Proof
.
intros
??
[??]
[??].
by
f_equal
.
Qed
.
Instance
prod_pi
(
A
B
:
Type
)
:
ProofIrrel
A
→
ProofIrrel
B
→
ProofIrrel
(
A
*
B
).
Proof
.
intros
??
[??]
[??].
by
f_equal
.
Qed
.
Instance
eq_pi
{
A
}
`
{
∀
x
y
:
A
,
Decision
(
x
=
y
)}
(
x
y
:
A
)
:
ProofIrrel
(
x
=
y
).
Proof
.
intros
??.
apply
eq_proofs_unicity
.
intros
x'
y'
.
destruct
(
decide
(
x'
=
y'
))
;
tauto
.
Qed
.
Instance
Is_true_pi
(
b
:
bool
)
:
ProofIrrel
(
Is_true
b
).
Proof
.
destruct
b
;
simpl
;
apply
_
.
Qed
.
Lemma
sig_eq_pi
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
(
x
y
:
sig
P
)
:
x
=
y
↔
`
x
=
`
y
.
Proof
.
...
...
@@ -34,7 +30,6 @@ Proof.
destruct
x
as
[
x
Hx
],
y
as
[
y
Hy
]
;
simpl
;
intros
;
subst
.
f_equal
.
apply
proof_irrel
.
Qed
.
Lemma
exists_proj1_pi
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
(
x
:
sig
P
)
p
:
`
x
↾
p
=
x
.
Proof
.
by
apply
(
sig_eq_pi
_
).
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment